铅胁迫对矮牵牛组培苗生长及光合特性的影响Effects of lead stress on the growth and photosynthetic characteristics of Petunia hybrid tissue culture plantlet
杨颖丽,施树倩,李嘉敏,张爱梅,张娅,李亚萍
摘要(Abstract):
以矮牵牛组培苗为材料,研究其在不同浓度Pb胁迫下的生长及光合生理反应.结果表明,Pb胁迫显著抑制矮牵牛组培苗的生长. 1和2 mmol/L Pb处理均导致叶绿素a、叶绿素b、类胡萝卜素和叶黄素含量显著下降,且2 mmol/L Pb胁迫导致的下降幅度更明显,但Pb胁迫不影响叶绿素a/b.随Pb处理浓度的增加叶绿素荧光参数光系统Ⅱ(PSⅡ)潜在活性、最大光化学效率、PSⅡ实际光化学效率、PSⅡ有效光化学效率、光化学猝灭系数以及光合电子传递效率逐渐减小,非光化学猝灭系数和调节性能量耗散电子产量增大, 0.05 mmol/L Pb处理不影响最大光化学效率、PSⅡ实际光化学效率和PSⅡ有效光化学效率.不同浓度Pb胁迫诱导矮牵牛组培苗叶片的气孔导度、净光合速率和蒸腾速率(T_r)显著下降,胞间CO_2浓度(C_i)明显增加. 0.05 mmol/L Pb处理不影响T_r和C_i, 0.8 mmol/L Pb处理使水分利用效率显著减小.徕卡正置荧光显微镜分析显示随Pb处理浓度的增加矮牵牛组培苗下表皮气孔密度显著增加,但气孔开度明显减小,保卫细胞形态发生畸变. Pb胁迫导致矮牵牛组培苗光合色素含量下降,光合系统捕获的能量减少,电子传递产额和光能转化利用效率降低,光合作用受阻,进一步导致生长受到抑制,且抑制效应具有浓度依赖性.
关键词(KeyWords): 矮牵牛;铅胁迫;生长;光合特性
基金项目(Foundation): 甘肃省重点研发计划项目(20YF3FA043);; 兰州市人才创新创业项目(20-RC-84)
作者(Author): 杨颖丽,施树倩,李嘉敏,张爱梅,张娅,李亚萍
DOI: 10.13885/j.issn.0455-2059.2023.01.007
参考文献(References):
- [1]聂硕,张福平,燕玉超,等.基于GIS的县域土壤重金属空间分布及污染评价分析[J].兰州大学学报(自然科学版), 2020, 56(1):81-89.
- [2]环境保护部,国土资源部.全国土壤污染状况调查公报[EB/OL].(2014-04-17)[2021-07-26]. http://www. mee.gov.cn/gkml/sthjbgw/qt/201404/t20140417_270670.htm.
- [3]陈旋,胡颖,孙明升,等.外源调节物质对铅胁迫下格木幼苗生理特性的影响[J].林业科学, 2021, 57(2):39-48.
- [4]张博宇,滕维超.铅胁迫对黄花风铃木幼苗生长和生理指标的影响[J].东北林业大学学报, 2020, 48(7):7-16.
- [5]薄伟,王松,康红梅,等.铅胁迫对玉蝉花生长及生理生化的影响[J].森林与环境学报, 2021, 41(4):373-381.
- [6]石文广,李靖,张玉红,等. 7种杨树铅抗性和积累能力的比较研究[J].南京林业大学学报(自然科学版), 2021,45(3):61-70.
- [7]刘大林,杨俊俏,刘兆明,等.镉、铅胁迫对草地早熟禾幼苗生理的影响[J].草业科学, 2015, 259(2):224-230.
- [8]邱昌恩,胡征宇. Pb2+胁迫对绿球藻(Chlorococcum sp.)的影响研究[J].武汉植物学研究, 2007, 25(5):521-526.
- [9] DAO L, BEARDALL J. Effects of lead on growth, photosynthetic characteristics and production of reactive oxygen species of two freshwater green algae[J]. Chemosphere, 2016, 147:420-429.
- [10]薛文秀,尚晓硕,蒋艺,等.铅胁迫对垂柳生长和光合生理特性的影响[J].天津师范大学学报(自然科学版),2020, 40(3):28-32.
- [11]刘英杰,朱雪梅,林立金,等.冬季农田杂草荠菜对铅的生理响应及积累特性研究[J].农业环境科学学报,2016, 35(1):29-36.
- [12]周建,江泽平,魏远.重金属铅胁迫对刺槐幼苗生长及铅离子转运特性的影响[J].浙江农林大学学报, 2016,33(5):742-748.
- [13]关春景,焦孟月,张彦妮. 8个矮牵牛品种抗旱性综合评价分析[J].西北林学院学报, 2018, 33(2):62-69.
- [14] KHAN A H A, KIYANI A, MIRZA C R, et al. Ornamental plants for the phytoremediation of heavy metals:present knowledge and future perspectives[J]. Environmental Research, 2021, 195:110780-110795.
- [15] LAJAYER B A, MOGHADAM N K, MAGHSOODI M R, et al. Phytoextraction of heavy metals from contaminated soil, water and atmosphere using ornamental plants:mechanisms and efficiency improvement strategies[J]. Environmental Science and Pollution Research,2019, 26(2):8468-8484.
- [16] KHAN A H A, KIYANI A, CHEEMA A S, et al. Integrative application of soil conditioners and bio-augmentation for enhanced heavy metal stabilization from wastewater and improved growth of Nicotiana alata L and Petunia hydrida L[J]. Journal of Plant Growth Regulation, 2021,40(1):240-253.
- [17] WANTE S P, LEUNG D W M. Phytotoxicity testing of diesel-contaminated water using Petunia grandiflora Juss Mix F1 and Marigold-Nemo Mix(Tagetes patula L)[J]. Environmental Monitoring and Assessment, 2018,190(7):408-417.
- [18] WU J L, LI K, LI J, et al. Transcriptome profiling of Cu stressed petunia petals reveals candidate genes involved in Fe and Cu crosstalk[J]. International Journal of Molecular Sciences,2021, 22(21):11604-11622.
- [19] KHAN A H A, NAWAZ I, YOUSAF S, et al. Soil amendments enhanced the growth of Nicotiana alata L.and Petunia hydrida L by stabilizing heavy metals from wastewater[J]. Journal of Environmental Management,2019, 242(15):46-55.
- [20] KHAN A H A, BUTT T A, MIZRA C R, et al. Combined application of selected heavy metals and EDTA reduced the growth of Petunia hybrida L[J]. Scientific Reports, 2019, 9:4138-4150.
- [21]高飞霞,邹天森,张金良,等.中国城市土壤环境铅含量分析[J].城市环境与城市生态, 2015, 28(2):1-5.
- [22] YAHMED J B, de OLIVEIRA T M, NOVILLO P Y, et al. A simple, fast and inexpensive method to assess salt stress tolerance of aerial plant part:investigations in the mandarin group[J]. Journal of Plant Physiology, 2016,190:36-43.
- [23] LICHTENTHALER H K. Chlorophylls and carotenoids:pigments of photosynthetic biomembranes[J]. Methods in Enzymology, 1987, 148:350-382.
- [24] BARBARA D-A, ADAMS W W. Xanthophyll cycle and light stress in nature:uniform response to excess direct sunlight among highter plant species[J]. Planta, 1996,198:460-470.
- [25] CHEN Y H, HU L, PUNTA M, et al. Homologue structure of the SLAC1 anion channel for closing stomata in leaves[J]. Nature, 2010, 467:1074-1080.
- [26] ZHOU J, ZHANG Z P, ZHANG Y C, et al. Effects of lead stress on the growth, physiology, and cellular structure of privet seedlings[J]. PLoS One, 2018, 13(3):1-17.
- [27]吴恒梅,刘垠泽,申晓慧,等.重金属铅胁迫下凤仙花幼苗及根际环境响应[J].中国野生植物资源, 2021,40(7):40-44.
- [28]邢春艳,周玉卿,赵九洲,等.野生圆锥八仙花对Pb(NO3)2重金属胁迫的生长及生理响应[J].北方园艺,2020, 18:71-77.
- [29]王宁,袁美丽,陈浩,等.不同光照条件和土壤含水量对节节麦表型可塑性及化感作用的影响[J].植物资源与环境学报, 2019, 28(1):34-42.
- [30]杨颖丽,徐玉玲,李嘉敏,等.锌铁单独或复合处理下小麦幼苗光合特性的比较[J].兰州大学学报(自然科学版), 2021, 57(3):344-352.
- [31]张金青,陈金龙,李凡,等.草地早熟禾种子萌发和幼苗生长对铅胁迫的适应性[J].草地学报, 2020, 28(1):133-143.
- [32]刘燕,杨丹,吴俨,等.铅胁迫对白三叶草叶绿素和光合效率的影响[J].黑龙江畜牧兽医, 2018(8)139-141.
- [33]辛建攀,李文明,祁茜,等.镉对梭鱼草叶片保护酶活性、光合及荧光特性的影响[J].草业学报, 2018,27(10):23-34.
- [34]黑泽文,向慧敏,章家恩,等.水合欢对重金属Cd、Pb的耐受性及吸收富集特性[J].生态毒理学报, 2019,14(3):286-296.
- [35] ZHOU X J, SUN C Y, ZHU P F, et al. Effects of antimony stress on photosynthesis and growth of Acorus calamus[J]. Frontiers in Plant Science, 2018, 9:579-588.
- [36]胡文俐,李培旺,李昌珠,等.铅锌胁迫对山苍子幼苗生理生化特性的影响[J].中南林业科技大学学报,2019, 39(9):109-114.
- [37]张嘉桐,关颖慧,司莉青,等. Pb2+、Cd2+复合胁迫对桑树光合作用的影响[J].北京林业大学学报, 2018,40(4):16-23.
- [38]孙德智,杨恒山,彭靖,等.外源SA和NO对NaCl胁迫下番茄幼苗生长、光合及离子分布的影响[J].生态学报, 2014, 34(13):3519-3528.
- [39]钟静,张瑶心,李景蕻,等.铅胁迫对薏苡种子萌发和幼苗生理特性的影响[J].种子, 2021, 40(3):102-106.
- [40]杨志娟,陈银萍,苏向楠,等.外源NO对铅胁迫下三叶鬼针草幼苗活性氧代谢的影响[J].广西植物, 2015,35(5):648-655.
- [41] ALICJA P N, ANDRZEJ B, ELZBIETA Z S, et al. Exogenously applied auxins and cytokinins ameliorate lead toxicity by inducing antioxidant defence system in green alga Acutodesmus obliquus[J]. Plant Physiology and Biochemistry, 2018, 132:535-546.
- [42] COLLEN J, PINTO E, PEDERSEN M, et al. Induction of oxidative stress in the red macroalga Gracilaria tenuistipitata by pollutant metals[J]. Archives of Environmental Contamination and Toxicology, 2003, 45(3):337-342.
- [43]王佳星,余国源,谢瑛,等.土壤铅胁迫对紫金牛生理特性的影响[J].河南农业科学, 2019, 48(4):102-107.
- [44]师生波,张怀刚,师瑞,等.青藏高原春小麦叶片光合作用的光抑制及PSⅡ反应中心光化学效率的恢复分析[J].植物生态学报, 2014, 38(4):375-386.
- [45]刘涛,刘文耀,柳帅,等. Pb2+、Zn2+胁迫对附生西南树平藓叶绿素含量和光合荧光特性的影响[J].生态学杂志, 2017, 36(7):1885-1893.
- [46]文静,胡红玲,陈洪,等.巨桉幼树对镉胁迫的光合生理响应[J].西北农林科技大学学报(自然科学版),2022, 50(3):1-10.
- [47]李笑媛,陈润芍,许安妮,等.川芎对镉、铅及其复合处理的生理响应[J].应用与环境生物学报, 2019, 25(2):321-327.
- [48]钱永强,周晓星,韩蕾,等. 3种柳树叶片PSⅡ叶绿素荧光参数对Cd2+胁迫的光响应[J].北京林业大学学报, 2011, 33(6):8-14.
- [49] LIU D, LI S, ISLAM E, et al. Lead accumulation and tolerance of Moso bamboo(Phyllostachys pubescens)seedlings:applications of phytoremediation[J]. Journal of Zhejiang University(Science B), 2015, 16:123-130.
- [50] MALKOWSKI E, SITKO K, PAULINA Z R, et al.Plant metallomics and functional omics[M]. Katowice:Springer Nature Switzerland, 2019:253-301.