重金属污染对金川矿区原生植物根际细菌群落的影响Effects of heavy metal pollution on rhizosphere bacterial community of autochthonous plants in Jinchuan mining area
高天鹏,万子栋,付靖雯,王雪莹,常国华,陈映全,台喜生,李昌明
摘要(Abstract):
为了探究重金属污染对矿区原生植物根际细菌群落结构的影响,选取下四分作为原生态对照样地、废渣堆和尾矿坝作为试验样地,选取碱蓬和骆驼蓬作为研究植物,采用Illumina Miseq高通量测序技术分析2种植物根际与根周围土壤细菌群落结构.结果显示:2种植物根际和根周围土壤的主要优势菌门为变形菌门、厚壁菌门、放线菌门和酸杆菌门.尾矿坝细菌群落多样性和丰富度最高,下四分2种植物根际细菌群落多样性和丰富度均高于根周围, 3个样地骆驼蓬根际细菌群落丰富度均高于根周围.主成分分析和UPGMA聚类分析表明同种植物根际和根周围的细菌群落结果相似度较高. RDA分析和相关分析表明, Ni、综合污染指数、Cr、土壤含水量、pH、全氮和全磷是影响根际细菌群落结构的主要土壤因子.
关键词(KeyWords): 干旱区;根际细菌群落;重金属污染;金川矿区
基金项目(Foundation): 国家自然科学基金项目(31860176,31460162);; 陕西省重点研究发展计划项目(2020ZDLSF06-06)
作者(Author): 高天鹏,万子栋,付靖雯,王雪莹,常国华,陈映全,台喜生,李昌明
DOI: 10.13885/j.issn.0455-2059.2020.04.009
参考文献(References):
- [1] Ashraf S, Ali Q, Zahir Z A, et al. Phytoremediation:environmentally sustainable way for reclamation of heavy metal polluted soils[J]. Ecotoxicology and Environmental Safety, 2019, 174:714-727.
- [2] Barsova N, Yakimenko O, Tolpeshta I, et al. Current state and dynamics of heavy metal soil pollution in Russian Federation:a review[J]. Environmental Pollution, 2019,249:200-207.
- [3] Ladonin D V. Platinum-group elements in soils and street dust of the southeastern administrative district of Moscow[J]. Eurasian Soil Science, 2018, 51(3):268-276.
- [4] Haroon B, Ping A, Pervez A, et al. Characterization of heavy metal in soils as affected by long-term irrigation with industrial wastewater[J]. Journal of Water Reuse and Desalination, 2018, 9(1):47-56.
- [5] Yan Xiao-lu, Liu Miao, Zhong Jing-qiu, et al. How human activities affect heavy metal contamination of soil and sediment in a long-term reclaimed area of the Liaohe River Delta, North China[J]. Sustainability, 2018, 10(2):338-346.
- [6] Alghobar M A, Suresha S. Evaluation of metal accumulation in soil and tomatoes irrigated with sewage water from Mysore City, Karnataka, India[J]. Journal of the Saudi Society of Agricultural Sciences, 2017, 16(1):49-59.
- [7] Luo Ting, Shen Man-lu, Zhou Jia-jie, et al. Chronic exposure to low doses of Pb induces hepatotoxicity at the physiological, biochemical, and transcriptomic levels of mice[J]. Environmental Toxicology, 2019, 34(4):521-529.
- [8] KintlováM, Blavet N, Cegan R, et al. Transcriptome of barley under three different heavy metal exposure reaction[J]. Genomics Data, 2017, 13:15-17.
- [9] Rai R, Agrawal M, Agrawal S B. Impact of heavy metals on physiological processes of plants:with special reference to photosynthetic system[J]. Plant Responses to Xenobiotics, 2016, 10:127-140.
- [10] Wang Xing-min, Zhang Can, Qiu Bao-li, et al. Biotransfer of Cd along a soil-plant-mealybug-ladybird food chain:a comparison with host plants[J]. Chemosphere,2017, 168:699-706.
- [11]徐琪,龚甲桂,赵胜军,等.金昌市金川区土壤重金属累积分析及污染评价[J].干旱区资源与环境, 2019,33(11):150-155.
- [12]李世雄.甘肃省金昌市主要污染物以及重金属污染物环境健康风险评价[D].兰州:兰州大学公共卫生学院,2013.
- [13]胡小娜,南忠仁,刘晓文,等.金昌城市居民区土壤重金属分布特征研究[J].干旱区资源与环境, 2011,25(1):180-184.
- [14] Bi Yin-li, Xie Lin-lin, Wang Jin, et al. Impact of host plants, slope position and subsidence on arbuscular mycorrhizal fungal communities in the coal mining area of north-central China[J]. Journal of Arid Environments, 2019, 163:68-76.
- [15] Aihemaiti A, Jiang Jian-guo, Li De-an, et al. The interactions of metal concentrations and soil properties on toxic metal accumulation of native plants in vanadium mining area[J]. Journal of Environmental Management,2018, 222:216-226.
- [16] Pérez-López R, Márquez-García B, Abreu M M, et al.Erica andevalensis and Erica australis growing in the same extreme environments:phytostabilization potential of mining areas[J]. Geoderma, 2014, 230/231:194-203
- [17] Santos E S, Abreu M M, Macías F. Rehabilitation of mining areas through integrated biotechnological approach:technosols derived from organic/inorganic wastes and autochthonous plant development[J]. Chemosphere, 2019, 224:765-775.
- [18] Rascio N, Navari-Izzo F. Heavy metal hyperaccumulating plants:how and why do they do it? and what makes them so interesting[J]. Plant Science, 2011, 180(2):169-181.
- [19]鲁艳,李新荣,何明珠,等. Ni和Cu胁迫对骆驼蓬抗氧化酶活性的影响[J].草业学报, 2012, 21(3):147-155.
- [20]郭本兆.青海经济植物志[M].西宁:青海人民出版社,1987:359-361.
- [21]鲁艳,李新荣,何明珠,等.不同浓度Ni、Cu处理对骆驼蓬光合作用和叶绿素荧光特性的影响[J].应用生态学报, 2011, 22(4):936-942.
- [22]杨策,陈环宇,李劲松,等.盐地碱蓬生长对滨海重盐碱地的改土效应[J].中国生态农业学报, 2019, 27(10):1578-1586.
- [23]王雨涵,陈冬月,江志勇,等. EDTA强化盐生植物修复Pb、Cd和盐渍化复合污染土壤[J].农业环境科学学报, 2018, 37(9):1866-1874.
- [24] Lei Shao-nan, Xu Xiao-hong, Cheng Zhi-qiang, et al.Analysis of the community composition and bacterial diversity of the rhizosphere microbiome across different plant taxa[J]. Microbiology Open, 2019, 8(6):e762.
- [25]王茜,王强,王晓娟,等.不同AM真菌对玉米生长的促生效应[J].兰州大学学报:自然科学版, 2015, 51(4):558-563.
- [26] Lopes L D, Pereira M C, Andreote F D. Bacterial abilities and adaptation toward the rhizosphere colonization[J]. Frontiers in Microbiology, 2016, 7:1341-1348.
- [27] He Huai-dong, Li Wai-chin, Yu Ri-qing, et al. Illuminabased analysis of bulk and rhizosphere soil bacterial communities in paddy fields under mixed heavy metal contamination[J]. Pedosphere, 2017, 27(3):569-578.
- [28]许华,明珠,孙岩.干旱荒漠区土壤酶活性对降水调控的响应[J].兰州大学学报:自然科学版, 2018, 54(6):790-797.
- [29] Riley D, Barber S A. Bicarbonate accumulation and pH changes at the soybean(Glycine max(L.)Merr.)rootsoil interface1[J]. Soil Science Society of America Journal, 1969, 33(6):905-908.
- [30]鲍士旦.土壤农化分析[M].北京:中国农业出版社,2000:100-103.
- [31] Lopez S, Piutti S, Vallance J, et al. Nickel drives bacterial community diversity in the rhizosphere of the hyperaccumulator Alyssum murale[J]. Soil Biology&Biochemistry, 2017, 114:121-130.
- [32] Durand A, Piutti S, Rue M, et al. Improving nickel phytoextraction by co-cropping hyperaccumulator plants inoculated by plant growth promoting rhizobacteria[J].Plant and Soil, 2016, 399:179-192.
- [33] Bulgarelli D, Schlaeppi K, Spaepen S, et al. Structure and functions of the bacterial microbiota of plants[J].Annual Review of Plant Biology, 2013, 64(1):807-838.
- [34] Wang Cong-yan, Wu Bing-de, Jiang Kun, et al. Effects of different concentrations and types of Cu and Pb on soil N-fixing bacterial communities in the wheat rhizosphere[J]. Applied Soil Ecology, 2019, 144:51-59.
- [35] Zhang Chang, Nie Shuang, Liang Jie, et al. Effects of heavy metals and soil physicochemical properties on wetland soil microbial biomass and bacterial community structure[J]. Science of the Total Environment, 2016,557/558:785-790.
- [36] Jiao Shuo, Li Qiao-ping, Zai Xiao-yu, et al. Complexity of bacterial communities within the rhizospheres of legumes drives phenanthrene degradation[J]. Geoderma, 2019, 353:1-10.
- [37] Li Sheng-jin, Hua Zheng-shuang, Huang Li-nan, et al.Microbial communities evolve faster in extreme environments[J]. Scientific Reports, 2014, 4(1):6205-6209.
- [38] Carvalhais L C, Rincon-Florez V A, Brewer P B, et al.The ability of plants to produce strigolactones affects rhizosphere community composition of fungi but not bacteria[J]. Rhizosphere, 2019, 9:18-26.
- [39] Chaparro J M, Badri D V, Vivanco J M. Rhizosphere microbiome assemblage is affected by plant development[J]. The ISME Journal, 2013, 8(4):790-803.
- [40] Sasse J, Martinoia E, Northen T. Feed your friends:do plant exudates shape the root microbiome?[J]. Trends in Plant Science, 2018, 23(1):25-41.
- [41] Chodak M, Go??biewski M, Morawska P J, et al. Diversity of microorganisms from forest soils differently polluted with heavy metals[J]. Applied Soil Ecology,2013, 64:7-14.
- [42] Lopez S, Goux X, Echevarria G, et al. Community diversity and potential functions of rhizosphere-associatedbacteria of nickel hyperaccumulators found in Albania[J]. Science of the Total Environment, 2019,654:237-249.
- [43] Zhang Rui, Chen Li-juan, Niu Zui-rong, et al. Water stress affects the frequency of firmicutes, clostridialesand lysobacter in rhizosphere soils of greenhouse grape[J]. Agricultural Water Management, 2019, 226:105776-105784.
- [44] Delgado B M, Oliverio A M, Brewer T E, et al. A global atlas of the dominant bacteria found in soil[J]. Science,2018, 359(6373):320-325.
- [45] Burkhardt E, Bischoff S, Akob D, et al. Heavy metal tolerance of Fe(Ⅲ)-reducing microbial communities in contaminated creek bank soils[J]. Applied and Environmental Microbiology, 2011, 77(9):3132-3136.
- [46] Zhang Xiao-xiao, Zhang Rui-jie, Gao Ju-sheng, et al.Thirty-one years of rice-rice-green manure rotations shape the rhizosphere microbial community and enrich beneficial bacteria[J]. Soil Biology and Biochemistry,2017, 104:208-217.
- [47] Sánchez O, Ferrera I, Garrido L, et al. Prevalence of potentially thermophilic microorganisms in biofilms from greenhouse-enclosed drip irrigation systems[J]. Archives of Microbiology, 2014, 196(3):219-226.
- [48] Liu Chen-jing, Lin Hai, Dong Ying-bao, et al. Investigation on microbial community in remediation of leadcontaminated soil by Trifoliumrepens L[J]. Ecotoxicology and Environmental Safety, 2018, 165:52-60.
- [49] Visioli G, Sanangelantoni A M, Conti F D, et al. Above and belowground biodiversity in adjacent and distinct serpentine soils[J]. Applied Soil Ecology, 2019, 133:98-103.
- [50] Fan Miao-chun, Xiao Xiao, Guo Yan-qing, et al. Enhanced phytoremdiation of robiniapseudoacacia in heavy metal-contaminated soils with rhizobia and the associated bacterial community structure and function[J]. Chemosphere, 2018, 197:729-740.
- [51]吴则焰,赵紫檀,林文雄,等.基于T-RFLP方法的连栽杉木根际土壤细菌群落变化研究[J].生态学报, 2019,39(19):7134-7143.
- [52]赵帆,赵密珍,王钰,等.基于高通量测序研究草莓根际微生物群落结构和多样性[J].土壤, 2019, 51(1):51-60.